Lecture 20

Weill start by classifying all groups upto isomorphis--m unto order 7 .
What does groups upto isomorphism means?
Weill consider two groups G and G 'as "same" in $G \cong G^{\prime}$. So, classifying groups of order, say n, upto isomorphism means that we want to make a list of all groups of order n such that no two groups on the list are isomorphic and any other group of order n must be isomorphic to one of the groups on our list.
This will make much more sense when we make the list below.

Let's start with order 1. There is only one
group of order $\perp ;\{e\{$. So the list is complete for order 1 .

Order 2 Since 2 is a prime \Rightarrow any group G, $|G|=2$ must be cyclic. Now any cyclic group of order $n \cong \mathbb{Z}_{n} \Rightarrow$ ie this case $G \cong \mathbb{Z}_{2}$.

So the only group of order 2, upto isomorphism is \mathbb{Z}_{2}.

By the similar reasoning the list of groups, unto isomorphism for

Order 3
order 5
order 7
\mathbb{Z}_{3}
\mathbb{Z}_{5}
\mathbb{Z}_{7}

Order 4 Let G be a group of order 4. By Lagrange's Theorem, if $a \in G, a \neq e$ then ord $(a)=2$ or 4 . If ord $(a)=4 \Rightarrow G$ is cyclic. If G is not cyclic then $\forall a \in G$, ord $(a)=2$ $\Rightarrow a^{2}=e \Rightarrow G$ is abelian.
So first of all, any group G of order 4 is abelion.

Also, the above argument shows that either G is cyclic, in which case $G \cong \mathbb{Z}_{4}$, or every element of G has order $2 \Rightarrow G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

We know from Assignment $3, \mathbb{Z}_{4} \neq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Thus, all the groups of order 4, upto isomorphi--sm, are \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

So now let's focus on groups of order 6 .

We already know examples of both abelian and nonabelian groups of order $6: \mathbb{Z}_{6}$ for abelian and D_{3} for nonabelian. We know S_{3} too but as seen in assignment z that $S_{3} \cong D_{3}$, so on the list S_{3} will be considered some as D_{3}.

So now we divide our problem in two cases:Case 1 is abelian.

If $a \in G, a \neq e \Rightarrow$ ord $(a)=2,3$ or 6 .
If $\operatorname{ord}(a)=6 \Rightarrow G$ is cyclic and hence $G \cong \mathbb{Z}_{6}$.
Now is we do not know if G has on element of order 6, then by Cauchy's Theorem, since $2 \mid 6, \exists a \in G$ sot. ord $(a)=2$.
Again by Cauchy's theorem, $\exists b \in G$ sot. ord $(b)=3$
Now, G is abelion $\Rightarrow a b=b a$ and $\operatorname{gcd}(2,3)=1$ so from a question from $Q .2(a)$ on Assignment

2, $\operatorname{ord}(a b)=6 \Rightarrow \quad G$ is cyclic.
So is G is an abelion group of order 6 then if must be cyclic and hence $\cong \mathbb{Z}_{6}$.

Case $2 G$ is nonabelian.
If G is nonabelion then G con't have om element of order 6. Then for $a \in G, a \neq e$,ord $(a)=2$ or ord $(a)=3$. If $\forall a \in G$, ord $(a)=2 \Rightarrow G$ is Qbelion, so \exists some $a \in G$ with ord $(a)=3$.

Now since elements of order come in pair and ord $(e)=3 \Rightarrow$ not every element can have order 3 because $|G|=6$. So $\exists b \in G$ with $\operatorname{ord}(b)=2$.

So $G=\left\{e, a, a^{2}, b, a b, a b^{2}\{\right.$
Now $b a \in G$, so it must be one of the elem--into listed above. Let's see what would it be.

If $b a=e \Rightarrow a=b^{-1}=b$, which is not possible as $\operatorname{ord}(a)=3$ and $\operatorname{ord}(b)=2$.

If $\quad b a=a \Rightarrow b=e$, not possible If $\quad b a=a^{2} \Rightarrow b=a$, not possible If $b a=b \Rightarrow a=e$, not possible If $b a=a b$, then again by $Q .2(a)$ on Assignment 2, ord $(a b)=6 \Rightarrow G$ is cyclic, not possible.

So the only possibility is that $a b^{2}=b a$. But this is precisely what happens in D_{3} !, i.e., is we send $a \longmapsto R_{120}$ and b to any of the flip, then $G \cong D_{3}$.

Hence is G is monabelian, $|G|=6$ then $G \cong D_{3}$.

Thus, upto isomorphism, there are two groups of order 6:- \mathbb{Z}_{6} and D_{3}.

This is how we classify groups of a certain order. We might need more tools than those required in the previous discussion and this is what we plan to do.

So. let's see some properties of a homomorphi--sm.
Proposition 1 Let $\varphi: G \rightarrow \bar{G}$ be a homomorphism.
Then

1) $\varphi(e)=\bar{e}, \bar{e}$ is the identity of \bar{G}.
2) For $a \in G, \varphi\left(a^{-1}\right)=[\varphi(a)]^{-1}$.
3) $\forall n \in \mathbb{Z}, \quad \varphi\left(a^{n}\right)=[\varphi(a)]^{n}$.
4) If $\operatorname{ord}(a)$ is finite then $\operatorname{ord}(\varphi(a)) \mid \operatorname{Ord}(a)$
5) Let $H \leq G$. Then $\varphi(H)=\{\varphi(h) \mid h \in H\} \leq \bar{G}$.
6) If H is cyclic then $\varphi(H)$ is cyclic.
7) If H is abelian then $\varphi(H)$ is abelian.
8) If $H \triangleleft G$ then $\varphi(H) \triangleleft G$.
9) If $|H|=n$, then $|\varphi(H)| \mid n$.
10) If $K \leqslant \bar{G}$, then $\varphi^{-1}(\bar{K})=\{k \in G \mid \varphi(k) \in K\{$ is a subgroup of G.
11) If $K \nabla \vec{G}$, then $\varphi^{-1}(k) \triangleleft G$.

Proof The proofs of 1), 2) and 3) are some as that for the properties of an isomorphism.
4) follows from 3) as if ord (a) $=n \Rightarrow$

$$
a^{n}=e \quad \Rightarrow \quad \varphi\left(a^{n}\right)=[\varphi(a)]^{n}=\varphi(e)=\vec{e}
$$

$\Rightarrow \operatorname{ord}(\varphi(a)) / \operatorname{ord}(a)$.
Note that ie case of an isomorphism, ord (a)=
$\operatorname{ord}(\varphi(a))$. But for a homomorphism we can only say that ord $(\varphi(a)) \mid$ ord (a).
e.g. consider $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{30}$ given by $\varphi(a)=10 a \bmod 30$.
One can check that φ is a homomorphism.
now, for $1 \in \mathbb{Z}_{12}$, ord $(1)=12, \varphi(1)=10$ and $\operatorname{ord}(10)$ $=3$ ie \mathbb{Z}_{30}. So $\operatorname{ord}(\varphi(1)) \neq \operatorname{ord}(1)$ and $\operatorname{ord}(\varphi(1)) \mid$ ord (1).

The proofs of rest of the statements are left as on easy exercise. [Some of them will be on Assignment 4].

Recall that if $\varphi: G \rightarrow \bar{G}$ is a homomorphism then

$$
\operatorname{Rer}(\varphi)=\{g \in G \mid \varphi(g)=\bar{e}\{
$$

we know that $\operatorname{Rer}(\varphi) \subseteq G$.

Proposition 2 $\operatorname{Rer}(\varphi) \triangleleft G$.
Proof First of all weill have to prove that $\operatorname{Rer}(\varphi) \leq G$. Note that $\varphi(e)=\bar{e} \Rightarrow e \in \operatorname{Rer}(\varphi)$.

So $\operatorname{ker}(\varphi) \neq \phi$. Weill use the subgroup test.
Let $a \in \operatorname{ker}(\varphi) \quad \varphi(a)=\bar{e}$

$$
b \in \operatorname{ker}(\varphi) \Rightarrow \varphi(b)=\bar{e}
$$

We want to show that $a b^{-1} \in \operatorname{Rer}(\varphi)$.
Consider $\varphi\left(a b^{-1}\right)=\varphi(a) \cdot \varphi\left(b^{-1}\right) \quad[a s \varphi$ is a homomo--rphism]

$$
\begin{aligned}
& =\varphi(a) \varphi(b)^{-1} \quad \text { [from 2) of Prop. 1] } \\
& =\bar{e} \cdot \bar{e}^{-1}=\bar{e}
\end{aligned}
$$

So $a b^{-1} \in \operatorname{Rer}(\varphi) \Rightarrow \operatorname{Rer}(\varphi) \leq G$.
Now, weill use the normal subgroup test.
Let $g \in G$ and $a \in \operatorname{Rer}(\varphi)$. We want to check if $\operatorname{gag}^{-1} \in \operatorname{ker}(\varphi)$. Then

$$
\varphi\left(g a g^{-1}\right)=\varphi(g) \cdot \varphi(a) \cdot \varphi(g)^{-1}
$$

$$
=\varphi(g) \cdot \bar{e} \cdot \varphi(g)^{-1}=\varphi(g) \cdot \varphi(g)^{-1}=\vec{e}
$$

So, $\operatorname{gag}^{-1} \in \operatorname{Rer}(\varphi)$ and $\operatorname{Rer}(\varphi) \triangleleft G$.

Let's end this lecture by counting the \# of homomorphisms from $\mathbb{Z}_{12} \rightarrow \mathbb{Z}_{30}$. Note that there is no isomorphism b/w \mathbb{Z}_{12} and \mathbb{Z}_{30} as they have different orders.

So suppose $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{30}$ is a homomorphi--sm. Then we know everything about φ by looking at $\varphi(1)$.
Now $1 \in \mathbb{Z}_{12}$ has order 12. From 4) Prop.1, we know that $\operatorname{ord}(\varphi(1)) / 12$
Also, $\varphi(1) \in \mathbb{Z}_{30} \Rightarrow$ by Lagrange's theorem

$$
\begin{equation*}
\operatorname{ord}(\varphi(1)) \mid 30 \tag{2}
\end{equation*}
$$

So from (1) and (2) the choices for orcler of $\varphi(1)$ and hence for $\varphi(1)$ are
order of $\varphi(1)$

\perp	0
2	15
3	10 or 20
6	5 or 25

Thus there are 6 choices of $\varphi(1)$ and one can check that each one of them indeed gives a homomorphism.
e.g. if $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{30}$ is given by $\varphi(1)=5$ then for $a \in \mathbb{Z}_{12}$

$$
\begin{aligned}
\varphi(a)=\frac{\varphi(\underbrace{1+1+\cdots+1}_{\text {a-times }})}{} & =\underbrace{\varphi(1)+\cdots+\varphi(1)}_{a-\text { times }} \\
& =5 a \bmod 30
\end{aligned}
$$

$$
\varphi(b)=5 b \bmod 30 \quad, b \in \mathbb{Z}_{12}
$$

and $y(a+b)=5(a+b) \bmod 30$

$$
=5 a+5 b \bmod 30
$$

$$
\begin{aligned}
& =5 a \bmod 30+5 b \bmod 30 \\
& =\varphi(a)+\varphi(b)
\end{aligned}
$$

So g is a homomorphism. Thus
$\#\left\{\right.$ homomorphism $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{30}\{=6$.

0 \qquad x \qquad 0

